
10/30/01 1

General Electric
Corporate Research & Development

Virginie Galtier Université Henri Poincaré
Kevin Mills NIST
Yannick Carlinet France Telecom
Stephen Bush GE CR&D
Amit Kulkarni GE CR&D

MILCOM 2001

October 30, 2001

Predicting and Controlling Resource Demand
in Heterogeneous Active Networks

10/30/01 2

General Electric
Corporate Research & Development

Presentation in Essence
Problem: Growing use of mobile code among heterogeneous
platforms increases the need to predict and control CPU usage,
while simultaneously increasing the challenge of doing so.

Approach: We devised a method to model CPU demands by mobile
code distributed among heterogeneous nodes, and we evaluated our
method when applied to predict and control CPU use in active
networks, which represent an advanced application of mobile code.

Results: Our method yielded improved performance in predicting
CPU demand and enabled more precise control of CPU usage in
a heterogeneous active network. (Our MILCOM paper addresses
only the prediction improvements.)

Impact: Many distributed applications rely increasingly on mobile
code. Our work can help to improve resource estimation and control in
such applications. (But additional research is needed.)

(more information available at http://w3.antd.nist.gov/active-nets/)

10/30/01 3

General Electric
Corporate Research & Development

The Problem

FAULT RESILIENCY OVERLOAD PREDICTION

INTEROPERABLE MANAGEMENT OF HETEROGENEOUS RESOURCES

FAULT RESILIENCY OVERLOAD PREDICTION

INTEROPERABLE MANAGEMENT OF HETEROGENEOUS RESOURCES

10/30/01 4

General Electric
Corporate Research & Development

Growing Population of Mobile Programs
on Heterogeneous Platforms

dlls, dlls, and
more dlls

APPLETS &
SERVLETS

MOBILE
AGENTS

C#
SCRIPTING ENGINES & LANGUAGES

Python

vbscript
jscript

Active Networks

dlls, dlls, and
more dlls

APPLETS &
SERVLETS
APPLETS &
SERVLETS

MOBILE
AGENTS
MOBILE
AGENTS

C#
SCRIPTING ENGINES & LANGUAGES

Python

vbscript
jscript

SCRIPTING ENGINES & LANGUAGES

Python

vbscript
jscript

PythonPython

vbscript
jscript

Active Networks

10/30/01 5

General Electric
Corporate Research & Development

Sources of Variability in Execution Environment and System Calls

6112,0424414,7315122,800stat

7314,5605317,5916027,066socketcall

6212,3624314,3945022,609write

6312,6063712,3624319,321read

uspccuspccuspccSystem Call

GreenBlackBlue

6112,0424414,7315122,800stat

7314,5605317,5916027,066socketcall

6212,3624314,3945022,609write

6312,6063712,3624319,321read

uspccuspccuspccSystem Call

GreenBlackBlue

ANETS ARCHITECTURE

843
167,830

479
159,412

534
240,269

Benchmark
Avg. CPU us
Avg. PCCs

jdk 1.1.6jdk 1.1.6jdk 1.1.6JVM

Linux 2.2.7Linux 2.2.7Linux 2.2.7OS

64 MB128 MB128 MBMemory

PentiumProPentium IIPentium IIProcessor

199 MHz333 MHz450 MHzCPU Speed

GreenBlackBlueTrait

843
167,830

479
159,412

534
240,269

Benchmark
Avg. CPU us
Avg. PCCs

jdk 1.1.6jdk 1.1.6jdk 1.1.6JVM

Linux 2.2.7Linux 2.2.7Linux 2.2.7OS

64 MB128 MB128 MBMemory

PentiumProPentium IIPentium IIProcessor

199 MHz333 MHz450 MHzCPU Speed

GreenBlackBlueTrait

SF1Active Node OS standard functions SF2 SF3 SFn…

SC1Underlying OS system calls SC2 SC3 SCn…SC1

ANodeOS interface layer

Scheduler
Resources

Management
Services

Device
Drivers

Network
Protocols

OS layer

Processor Persistent
StorageRAM Network

Cards
Physical layer

AA1 AA2

EE1: ANTS (java)

AA3 AA4

EE2: Magician (java)

Virtual Machine layer

SF1Active Node OS standard functions SF2 SF3 SFn…

SC1Underlying OS system calls SC2 SC3 SCn…SC1

ANodeOS interface layer

Scheduler
Resources

Management
Services

Device
Drivers

Network
Protocols

OS layer

Processor Persistent
StorageRAM Network

Cards
Physical layer

AA1 AA2

EE1: ANTS (java)

AA3 AA4

EE2: Magician (java)

Virtual Machine layer

SF1Active Node OS standard functions SF2 SF3 SFn…

SC1Underlying OS system calls SC2 SC3 SCn…SC1

ANodeOS interface layer
SF1Active Node OS standard functions SF2 SF3 SFn…

SC1Underlying OS system calls SC2 SC3 SCn…SC1

ANodeOS interface layer
SF1Active Node OS standard functions SF2 SF3 SFn…SF1Active Node OS standard functions SF2 SF3 SFn…

SC1Underlying OS system calls SC2 SC3 SCn…SC1SC1Underlying OS system calls SC2 SC3 SCn…SC1

ANodeOS interface layer

Scheduler
Resources

Management
Services

Device
Drivers

Network
Protocols

OS layer
Scheduler

Resources
Management

Services

Device
Drivers

Network
ProtocolsScheduler

Resources
Management

Services

Device
Drivers

Network
Protocols

OS layer

Processor Persistent
StorageRAM Network

Cards
Physical layer

Processor Persistent
StorageRAM Network

CardsProcessor Persistent
StorageRAM Network

Cards
Physical layer

AA1 AA2

EE1: ANTS (java)

AA3 AA4

EE2: Magician (java)

Virtual Machine layer

AA1 AA2

EE1: ANTS (java)

AA1 AA2

EE1: ANTS (java)

AA3 AA4

EE2: Magician (java)

AA3 AA4

EE2: Magician (java)

Virtual Machine layer

10/30/01 6

General Electric
Corporate Research & Development

Our Approach to Solve the Problem

10/30/01 7

General Electric
Corporate Research & Development

Our Approach to Modeling CPU Demands

Statistically Compare
Simulation Results
against Measured
Data

Simulate
Model with
Monte Carlo
Experiment

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50 bins-20000 reps100 bins-20000 reps

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50 bins-20000 reps100 bins-20000 reps

Statistically Compare
Simulation Results
against Measured
Data

Simulate
Model with
Monte Carlo
Experiment

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50 bins-20000 reps100 bins-20000 reps

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50 bins-20000 reps100 bins-20000 reps

Trace is a series of system calls and
transitions stamped with CPU time use

AA2

EE1:ANTS (java)

read write kill...
ANodeOS interface

OS layer
Physical layer

Generate
Execution Trace

Monitor at
System Calls

in Active Node OS

…
begin, user (4 cc), read (20 cc), user (18 cc),
write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user (18 cc), �
kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user (8 cc),
kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user (18 cc),
write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user (17 cc),
kill (20 cc), user (8 cc), end
…

Trace is a series of system calls and
transitions stamped with CPU time use

AA2

EE1:ANTS (java)

read write kill...
ANodeOS interface

OS layer
Physical layer

Generate
Execution Trace

Monitor at
System Calls

in Active Node OS

Trace is a series of system calls and
transitions stamped with CPU time use

AA2

EE1:ANTS (java)

read write kill...read write kill...
ANodeOS interface

OS layer
Physical layer

Generate
Execution Trace

Monitor at
System Calls

in Active Node OS

…
begin, user (4 cc), read (20 cc), user (18 cc),
write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user (18 cc), �
kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user (8 cc),
kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user (18 cc),
write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user (17 cc),
kill (20 cc), user (8 cc), end
…

Scenario A:
sequence = “read-write”,
probability = 2/5

Scenario B:
sequence = “read-kill”,
probability = 3/5

Distributions of CPU time in system calls
:

Generate
Active Application Model

Distributions of CPU time between system calls :

0 5 10 15 20

0.8

0.2

P

cc

read

write kill

0 5 10 15 20

0.67
0.33

cc

P
read-kill

write-end

begin-read read-write

kill-end

Scenario A:
sequence = “read-write”,
probability = 2/5

Scenario B:
sequence = “read-kill”,
probability = 3/5

Distributions of CPU time in system calls
:

Generate
Active Application Model

Distributions of CPU time between system calls :

0 5 10 15 20

0.8

0.2

P

cc

read

write kill

0 5 10 15 20

0.67
0.33

cc

P

0 5 10 15 20

0.67
0.33

cc

P
read-kill

write-end

begin-read read-write

kill-end

Scaling AA Models
AA model on node X:
read 30 cc
user 10 cc
write 20 cc

Model of node X:
read 40 cc
write 18 cc
user 13 cc

Model of node Y:
read 20 cc
write 45 cc
user 9 ccscale

AA model on node Y:
read 30*20/40 = 15 cc
user 10*9/13 = 7 cc
write 20*45/18 = 50 cc

Scaling AA Models
AA model on node X:
read 30 cc
user 10 cc
write 20 cc

Model of node X:
read 40 cc
write 18 cc
user 13 cc

Model of node Y:
read 20 cc
write 45 cc
user 9 ccscale

AA model on node Y:
read 30*20/40 = 15 cc
user 10*9/13 = 7 cc
write 20*45/18 = 50 cc

AA model on node X:
read 30 cc
user 10 cc
write 20 cc

Model of node X:
read 40 cc
write 18 cc
user 13 cc

Model of node Y:
read 20 cc
write 45 cc
user 9 ccscale

AA model on node Y:
read 30*20/40 = 15 cc
user 10*9/13 = 7 cc
write 20*45/18 = 50 cc

Statistically Compare
Simulation Results
against Measured
Data

Simulate
Model with
Monte Carlo
Experiment

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50 bins-20000 reps100 bins-20000 reps

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50 bins-20000 reps100 bins-20000 reps

Statistically Compare
Simulation Results
against Measured
Data

Simulate
Model with
Monte Carlo
Experiment

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50 bins-20000 reps100 bins-20000 reps

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50 bins-20000 reps100 bins-20000 reps

Trace is a series of system calls and
transitions stamped with CPU time use

AA2

EE1:ANTS (java)

read write kill...
ANodeOS interface

OS layer
Physical layer

Generate
Execution Trace

Monitor at
System Calls

in Active Node OS

…
begin, user (4 cc), read (20 cc), user (18 cc),
write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user (18 cc), �
kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user (8 cc),
kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user (18 cc),
write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user (17 cc),
kill (20 cc), user (8 cc), end
…

Trace is a series of system calls and
transitions stamped with CPU time use

AA2

EE1:ANTS (java)

read write kill...
ANodeOS interface

OS layer
Physical layer

Generate
Execution Trace

Monitor at
System Calls

in Active Node OS

Trace is a series of system calls and
transitions stamped with CPU time use

AA2

EE1:ANTS (java)

read write kill...read write kill...
ANodeOS interface

OS layer
Physical layer

Generate
Execution Trace

Monitor at
System Calls

in Active Node OS

…
begin, user (4 cc), read (20 cc), user (18 cc),
write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user (18 cc), �
kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user (8 cc),
kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user (18 cc),
write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user (17 cc),
kill (20 cc), user (8 cc), end
…

Scenario A:
sequence = “read-write”,
probability = 2/5

Scenario B:
sequence = “read-kill”,
probability = 3/5

Distributions of CPU time in system calls
:

Generate
Active Application Model

Distributions of CPU time between system calls :

0 5 10 15 20

0.8

0.2

P

cc

read

write kill

0 5 10 15 20

0.67
0.33

cc

P
read-kill

write-end

begin-read read-write

kill-end

Scenario A:
sequence = “read-write”,
probability = 2/5

Scenario B:
sequence = “read-kill”,
probability = 3/5

Distributions of CPU time in system calls
:

Generate
Active Application Model

Distributions of CPU time between system calls :

0 5 10 15 20

0.8

0.2

P

cc

read

write kill

0 5 10 15 20

0.67
0.33

cc

P

0 5 10 15 20

0.67
0.33

cc

P
read-kill

write-end

begin-read read-write

kill-end

Scaling AA Models
AA model on node X:
read 30 cc
user 10 cc
write 20 cc

Model of node X:
read 40 cc
write 18 cc
user 13 cc

Model of node Y:
read 20 cc
write 45 cc
user 9 ccscale

AA model on node Y:
read 30*20/40 = 15 cc
user 10*9/13 = 7 cc
write 20*45/18 = 50 cc

Scaling AA Models
AA model on node X:
read 30 cc
user 10 cc
write 20 cc

Model of node X:
read 40 cc
write 18 cc
user 13 cc

Model of node Y:
read 20 cc
write 45 cc
user 9 ccscale

AA model on node Y:
read 30*20/40 = 15 cc
user 10*9/13 = 7 cc
write 20*45/18 = 50 cc

AA model on node X:
read 30 cc
user 10 cc
write 20 cc

Model of node X:
read 40 cc
write 18 cc
user 13 cc

Model of node Y:
read 20 cc
write 45 cc
user 9 ccscale

AA model on node Y:
read 30*20/40 = 15 cc
user 10*9/13 = 7 cc
write 20*45/18 = 50 cc

10/30/01 8

General Electric
Corporate Research & Development

Our Model Predicts CPU Demands with Increased Accuracy

10-381-81machine Amachine C
9-52115machine Cmachine D

24-21014machine Dmachine E
SmartRoute

10-9281287machine Dmachine A
14-7103121machine Cmachine B

9-53034machine Cmachine E
SmartPing

Magician

95209226machine Cmachine A
10-211-11machine Dmachine C
12-22022machine Emachine B

Multicast

7-72923machine Cmachine E
8-21931machine Cmachine D
80.4211094machine Bmachine A

Ping

ANTS

% Error
high

percentiles
prediction

% Error
mean

prediction

% Error
high

percentiles
prediction

% Error
mean

prediction
Node YNode XAAEE

Predictions with NIST
model

Predictions after scaling
with speed ratio

10-381-81machine Amachine C
9-52115machine Cmachine D

24-21014machine Dmachine E
SmartRoute

10-9281287machine Dmachine A
14-7103121machine Cmachine B

9-53034machine Cmachine E
SmartPing

Magician

95209226machine Cmachine A
10-211-11machine Dmachine C
12-22022machine Emachine B

Multicast

7-72923machine Cmachine E
8-21931machine Cmachine D
80.4211094machine Bmachine A

Ping

ANTS

% Error
high

percentiles
prediction

% Error
mean

prediction

% Error
high

percentiles
prediction

% Error
mean

prediction
Node YNode XAAEE

Predictions with NIST
model

Predictions after scaling
with speed ratio

High percentiles aggregate 80th, 85th, 90th,
95th, and 99th percentiles

10/30/01 9

General Electric
Corporate Research & Development

Evaluate Our Approach Applied to Control CPU Usage
in a Heterogeneous Active Network

Goals: (1) Show reduced CPU usage by terminating malicious packets earlier AND
(2) Show fewer terminations of good packets

Fast
Intermediate

Node
(334 MHz)

Sender
Node

(199 MHz)

Slow
Intermediate

Node
(100 MHz)

Destination
Node

(451 MHz)

2278

455

Malicious Packet dropped too late
(CPU use reached TTL + tolerance)

Needed
execution time

CPU time “stolen”

TTL

Good packet dropped early
(CPU use reached TTL + tolerance)

TTL

CPU time
possibly “wasted” Additional CPU

time needed

10/30/01 10

General Electric
Corporate Research & Development

Results for CPU-Control Experiment
Fast

Intermediate
Node

(334 MHz)

Sender
Node

(199 MHz)

Slow
Intermediate

Node
(100 MHz)

Destination
Node

(451 MHz)

2278

455

Fast
Intermediate

Node
(334 MHz)

Fast
Intermediate

Node
(334 MHz)

Sender
Node

(199 MHz)

Sender
Node

(199 MHz)

Sender
Node

(199 MHz)

Slow
Intermediate

Node
(100 MHz)

Slow
Intermediate

Node
(100 MHz)

Destination
Node

(451 MHz)

Destination
Node

(451 MHz)

Destination
Node

(451 MHz)

22782278

455455

Control = Kill any packet that executes above predicted 99th percentile of execution time

Measured: 8.29 ms
= 1,650,084 cc

23.99 ms
= 2,398,702 cc

4.76 ms
= 1,589,382 cc

Experiment #1: predictions based on execution time on sender and processor speed ratio
8.29 ms = 2,769,487 cc 8.29 ms = 829,187 cc

CPU Time Wasted
455 * 8.29 = 3,772 ms

2186 good packets are killed

Experiment #1:

8.29 ms = 2,769,487 cc 8.29 ms = 829,187 cc

CPU Time Stolen
455 * 8.29 = 3,772 ms

2186 good packets are killed
CPU Time Wasted = 18,122 ms

Experiment #2: predictions obtained with NIST model
4.76 ms 23.99 ms

CPU Time Wasted
455 * (8.29 – 4.76) = 1,606 ms

Improvement in avg. CPU use = 0.7 ms/packet
Only 19 good packets are killed

Improvement = 2167 packets saved!

Experiment #2: predictions obtained with NIST model
4.76 ms 23.99 ms

CPU Time Stolen
455 * (8.29 – 4.76) = 1,606 ms

Improvement in avg. CPU use = 0.7 ms/packet

Only 19 good packets are killed
CPU Time Wasted = 456 ms

Improvement = 2167 packets saved!

Experiment #1: predictions based on execution time on sender and processor speed ratio
8.29 ms = 2,769,487 cc 8.29 ms = 829,187 cc

CPU Time Wasted
455 * 8.29 = 3,772 ms

2186 good packets are killed

Experiment #1:

8.29 ms = 2,769,487 cc 8.29 ms = 829,187 cc

CPU Time Stolen
455 * 8.29 = 3,772 ms

2186 good packets are killed
CPU Time Wasted = 18,122 ms

Experiment #2: predictions obtained with NIST model
4.76 ms 23.99 ms

CPU Time Wasted
455 * (8.29 – 4.76) = 1,606 ms

Improvement in avg. CPU use = 0.7 ms/packet
Only 19 good packets are killed

Improvement = 2167 packets saved!

Experiment #2: predictions obtained with NIST model
4.76 ms 23.99 ms

CPU Time Stolen
455 * (8.29 – 4.76) = 1,606 ms

Improvement in avg. CPU use = 0.7 ms/packet

Only 19 good packets are killed
CPU Time Wasted = 456 ms

Improvement = 2167 packets saved!

10/30/01 11

General Electric
Corporate Research & Development

Evaluate Our Approach Applied to Predict CPU Demand
in a Heterogeneous Active Network

Time

L-3

L-2

L-4

AN-5

AN-4 Operational
Network

Shadow, Prediction-Overlay Network

L-1 L-3

L-2

L-4

AN-5AN-1

AN-4
DP

LP
LP

LP

L-1

AN-1

Space

Time

L-3

L-2

L-4

AN-5

AN-4 Operational
Network

Shadow, Prediction-Overlay Network

L-1 L-3

L-2

L-4

AN-5AN-1

AN-4
DP

LP
LP

LP

L-1

AN-1

Space
Overlay network simulates application traffic ahead in virtual time.

Goals: (1) Show improved look ahead into virtual time AND
(2) Show fewer tolerance rollbacks in the simulation

10/30/01 12

General Electric
Corporate Research & Development

Active Virtual Network Management Prediction (AVNMP)

Experiment #1: CPU predictions based on average load on sender node and then
transformed use processor-speed ratio

Experiment #2: CPU predictions obtained with NIST model
For both experiments: tolerance before rollback = 10 %.

Active
Application
Packets

Active
Application
Packets

Active
Application
Packets

virtual message

Sender
Node

Driving process

Simulates
message

source

AA message
model

Node

Logical process

CPU
modelpredicts

MIB
Predicted
-Nb. of msg.
-CPU use
Real
-Nb. of msg.
-CPU use

updates compares

EE AAup
da

te
s

rollback

Node

Logical process

CPU
modelpredicts

MIB
Predicted
-Nb. of msg.
-CPU use
Real
-Nb. of msg.
-CPU use

updates compares

EE AAup
da

te
s

rollback
virtual message

Active
Application
Packets

Active
Application
Packets

Active
Application
Packets

Active
Application
Packets

Active
Application
Packets

Active
Application
Packets

virtual messagevirtual message

Sender
Node

Driving process

Simulates
message

source

AA message
model

Sender
Node

Sender
Node

Driving process

Simulates
message

source

AA message
model

Driving process

Simulates
message

source

AA message
model

AA message
model

Node

Logical process

CPU
model
CPU
modelpredicts

MIB
Predicted
-Nb. of msg.
-CPU use
Real
-Nb. of msg.
-CPU use

MIB
Predicted
-Nb. of msg.
-CPU use
Real
-Nb. of msg.
-CPU use

updates compares

EE AAup
da

te
s

rollback

Node

Logical process

CPU
modelpredicts

MIB
Predicted
-Nb. of msg.
-CPU use
Real
-Nb. of msg.
-CPU use

updates compares

EE AAup
da

te
s

rollback

Node

Logical process

CPU
model
CPU
modelpredicts

MIB
Predicted
-Nb. of msg.
-CPU use
Real
-Nb. of msg.
-CPU use

MIB
Predicted
-Nb. of msg.
-CPU use
Real
-Nb. of msg.
-CPU use

updates compares

EE AAup
da

te
s

rollback
virtual messagevirtual message

virtual messagevirtual message

10/30/01 13

General Electric
Corporate Research & Development

Results for CPU-Prediction Experiments

0028124292Rollbacks

31310243254-20-101maximum look ahead (seconds)

destination nodesecond
intermediate nodefirst intermediate

nodedestination nodesecond
intermediate node

first intermediate
node

Exp#2: CPU prediction with NIST modelExp#1: sender values scaled with processor speed ratio

AVNMP improvement on the first intermediate node:

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Time

R
ol

lb
ac

ks
 tr

ig
ge

re
d

by
 C

PU

us
ag

e
pr

ed
ic

tio
ns

 to
o

fa
r f

ro
m

re

al
ity Exp#1

Exp#2

-1000000

-800000

-600000

-400000

-200000

0

200000

400000

600000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Time

Lo
ok

 A
he

ad
 (m

s)
Exp#1
Exp#2

10/30/01 14

General Electric
Corporate Research & Development

Future Research

Improve NIST Models
Space-Time Efficiency
Account for Node-Dependent Conditions
Characterize Error Bounds

Investigate Alternate Models
White-box Model
Lower-Complexity Analytically Tractable Models
Models that Learn

Improve AVNMP Performance

10/30/01 15

General Electric
Corporate Research & Development

Presentation in Summary
Problem: Growing use of mobile code among heterogeneous
platforms increases the need to predict and control CPU usage,
while simultaneously increasing the challenge of doing so.

Approach: We devised a method to model CPU demands by mobile
code distributed among heterogeneous nodes, and we evaluated our
method when applied to predict and control CPU use in active
networks, which represent an advanced application of mobile code.

Results: Our method yielded improved performance in predicting
CPU demand and enabled more precise control of CPU usage in
a heterogeneous active network. (Our MILCOM paper addresses
only the prediction improvements.)

Impact: Many distributed applications rely increasingly on mobile
code. Our work can help to improve resource estimation and control in
such applications. (But additional research is needed.)

(more information available at http://w3.antd.nist.gov/active-nets/)

